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ABSTRACT  

The Servicio Geológico Colombiano shows the seismic moment tensors and focal mechanisms calculated for earthquakes located 

in the national territory and border regions from 2014 to 2021. These solutions were obtained using different methods based on 

waveform inversion (SWIFT, SCMTV, W phase, and ISOLA) and first-motion polarities (FPFIT). This information is organized 

in a database and is available to the public through a web page that can be searched by date, circular area, or quadrant.  The 

moment tensor centroid solutions are fundamental to understanding the fault's geometry, the seismic source generated by an 

earthquake, its magnitude, and the energy released. Likewise, thanks to this information it is possible to make interpretations 

about tectonic plates, Earth's crust stress analysis and its dynamics, kinematic and dynamic source models, active faults analysis, 

and tsunamigenic potential of earthquakes, among other aspects. 
Keywords: Seismic Moment Tensor, Focal Mechanism, SWIFT, SCMTV, W phase, ISOLA, first-motion polarities, seismology. 

 

RESUMEN  

El Servicio Geológico Colombiano presenta los tensores de momento sísmico y mecanismos focales calculados para sismos 

localizados en el territorio nacional y regiones fronterizas desde 2014 hasta 2021. Estas soluciones se obtuvieron usando diferen-

tes métodos basados en inversión de formas de onda (SWIFT, SCMTV, Fase W e ISOLA) y polaridades de primeros arribos 

(FPFIT). Esta información se ha organizado en una base de datos y se ha dispuesto al público mediante una página web por medio 

de la cual se pueden hacer búsquedas por fechas, área circular o cuadrante. Las soluciones del centroide del tensor de momento 

son fundamentales para comprender la geometría de la falla, la fuente sísmica que produce un sismo, su magnitud, y la energía 

liberada por el mismo. Igualmente, gracias a esta información es posible hacer interpretaciones sobre la tectónica de placas, 

análisis de esfuerzos de la corteza terrestre y su dinámica, modelos dinámicos y cinemáticos de la fuente, análisis de fallas activas 

y potencial tsunamigénico de sismos, entre otros aspectos.  
Palabras clave: Tensor de Momento Sísmico, mecanismo focal, SWIFT, SCMTV, Fase W, ISOLA, polaridades de primeros arribos, sismología. 
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1. INTRODUCTION 

 

The Servicio Geológico Colombiano (SGC) made great efforts 

to calculate earthquakes' Seismic Moment Tensor (SMT) and 

Focal Mechanism (FM) in recent years, using different methods 

of waveform inversion and first-motion polarities, to have infor-

mation that allows us to better understand the country seismic 

sources. The variety of methodologies is mainly due to the Na-

tional Seismological Network of Colombia (RSNC, from its ab-

breviation in Spanish) evolution, station densification in the ter-

ritory, as well as its instrumental and technological updating in 

the data acquisition and processing software.  Also, having a va-

riety of methodologies for SMT calculation allows for control-

ling the solution's quality and stability, turning the SGC earth-

quake catalogs into self-sustainable tools over time. 

The Servicio Geológico Colombiano is the official entity 

that provides information on earthquakes in Colombian territory 

and is part of the National System for Disaster Risk Manage-

ment.  Therefore, through the RSNC, the SGC monitors seismic-

ity in real-time permanently twenty-four hours a day, seven days 

a week. 

Thus, when an earthquake is recorded, the information as-

sociated is immediately calculated, including seismic moment 

tensor and focal mechanism for those earthquakes that allow it. 

This information is stored in a database and is available to the 

public in real-time.  This article presents the SMT and FM from 

2014 to 2021, but we clarify that this database is constantly up-

dated accounting for the SGC mission. 

This database can be used by any researcher interested in 

geophysics, tectonics, or seismology to do their processing, 

modeling, or interpretation. Although they allow scientific anal-

ysis, they are also important tools for risk management plans and 

land use planning. Therefore, these data became of great impact 

on the scientific community as well as decision-makers. 

Furthermore, this database extends and enhances efforts 

historically made determining focal mechanisms in the region at 

both the national and local levels by other researchers such as 

Molnar and Sykes, 1969; Kafka and Weidner, 1981; Pennington, 

1981; Audemard et al, 2005; Cortés and Angelier, 2005; Palma 

et al., 2010; Dicelis et al., 2016; Gómez-Alba et al., 2016; Poli 

et al., 2016; Posada et al., 2017; Yoshimoto et al., 2017; 

Monsalve-Jaramillo et al., 2018; Chang et al., 2019; Londoño et 

al. 2019; Poveda et al., 2022; Quintanar et al., 2022; Tary et al., 

2022; Bishop et al., 2023. 

Although there are international SMT catalogs with events 

information in Colombia, like Global Centroid Moment Tensor 

Catalog (Dziewonski, et al., 1981 and Ekström, et al., 2012), the 

German GEOFON project (Hanka and Kind, 1994; Saul et al., 

2011; GFZ, 2023), from the German Research Centre for Geosci-

ences (GFZ) and the United States Geological Survey 

(https://www.usgs.gov/programs/earthquake-hazards), among 

others, the SGC can calculate a larger number of solutions since 

installed seismological stations quality and distribution in the 

country allow better stability to solutions for earthquakes with 

moderate magnitudes. 

The SGC also has some catalogs with seismicity recorded in 

the country, which may be useful for the reader: Viewer of seis-

mological information (Visor información sismológica) in real-

time at: https://www.sgc.gov.co/sismos, Seismicity catalog 

(Catálogo de sismicidad) at: http://bdrsnc.sgc.gov.co/pagi-

nas1/catalogo/index.php, Accelerations catalog (Catálogo de 

aceleraciones) at: http://bdrsnc.sgc.gov. co/paginas1/catalogo/in-

dex_rnac.php, Macroseismic intensity data and effects of signifi-

cant earthquakes in Colombia based on historical seismicity stud-

ies (Datos de intensidad macrosísmica y efectos de los sismos sig-

nificativos de Colombia a partir de estudios de sismicidad histó-

rica) at: http://sish.sgc.gov.co/visor/ (Sarabia Gómez et al. 2022), 

Integrated Seismic Catalog for Colombia (Catálogo Sísmico Inte-

grado para Colombia), as input or reference to generate hazard 

models and characterize seismogenic sources at: https://cat-

alogosismico.sgc.gov.co/visor/index.html (Montejo et al., 2023). 

2. DATA DESCRIPTION 

 

Data correspond to seismic moment tensors and focal mechanisms 

calculated by the SGC for earthquakes located in the national ter-

ritory and border regions from 2014 to 2021 (Figure 1). The solu-

tions were obtained using different methods based on waveform 

inversion and first motion P-waves polarities and systematically 

compared with calculated Global Centroid Moment Tensor cata-

log solutions (Dziewonski et al., 1981 and Ekström et al., 2012) to 

ensure their quality (Figure 4). Notice the importance of a station 

good distribution that records each earthquake to calculate the so-

lutions with those different methods, so the earthquake azimuthal 

coverage is as homogeneous as possible. 

Moreover, for waveform inversion methods it is necessary to 

use broadband stations; since 2008 the SGC started a densification 

process and instrumental updating of the National Seismological 

Network of Colombia (RSNC), achieving a stable and fairly uni-

form station distribution in 2014, making possible the proper 

methodologies implementation for moment tensor calculation and 

focal mechanisms 

https://www.usgs.gov/programs/earthquake-hazards
https://www.sgc.gov.co/sismos


3 

Moment tensor and focal mechanism data of earthquakes recorded by Servicio Geológico Colombiano from 2014 to 2021 

 

 

 

.

.

 

Figure 1. Focal mechanisms calculated by the SGC of earthquakes occurred between 2014 and 2021.  From each focal mechanism, the user can access the detail of 
the moment tensor solutions for each earthquake  

 

 

A database stores the results and contains the solutions of each 

earthquake for the used methods to calculate them (described in 

"materials and methods").  At the web page 

http://bdrsnc.sgc.gov.co/sismologia1/sismologia/focal_seis-

comp_3/index.html the users can access to focal mechanism and 

moment tensor catalog data, the search can be simple (including 

only initial and final dates), or, if preferred, with additional ad-

vanced parameters (for example, to select results in a circular geo-

graphic region or latitude-longitude quadrant). As a result of this 

search, a list is obtained with seismic events with focal mechanisms 

and moment tensors for the selected dates and areas.  The table con-

tains: UTC (Universal Time Coordinated) date and time, region, 

latitude, longitude, depth, magnitude, location agency, and solu-

tions obtained selected by the used method, showing the focal 

mechanism graphical representation.  By clicking on it the user can 

access further information. The table can be organized by any of its  

 

 

columns and either download an Excel file with the results or 

be represented automatically on a map (Figures 2 and 1). 

For each method, are presented the focal mechanism, the 

moment tensor solution including the centroid location, mo-

ment, moment magnitude (Mw), depth, nodal planes, principal 

axes, and moment tensor, as applicable. 

An example of a solution with the SWIFT method (Source 

parameter determination based on Waveform Inversion of Fou-

rier Transformed seismograms) is shown in Figure 3. The maps 

are also shown with the solution, the waveform matches ob-

tained from the inversion with observed and synthesized seis-

mograms, and the source-time function (the latter is only shown 

for the SWIFT method). 
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Figure 2. Input interface to the historical seismicity information system 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Results of a moment tensor solution with the SWIFT method calculated by the SGC for the March 23, 2019 earthquake, located in Versalles - Valle del 

Cauca, depth 126 km. a) Seismic moment tensor inversion results, b) the waveform matches obtained from the inversion with observed and synthesized seismograms, 
c) source time function, d) location map and centroid solution of the seismic moment tensor, e) location map of seismic source and the available stations for the  

    inversion. 

 

c)                                                       d)                                                                e) 

a)                                                                         b)      
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3. DATA RELEVANCE 

 

This is the catalog of centroid moment tensor solutions and focal 

mechanisms located in Colombia and its border regions from 

2014 to 2021 (this catalog is routinely updated by the SGC, so it 

contains information from later years), and comprehends the so-

lutions calculated with acceptable quality (variance < 70% usu-

ally). 

Unlike other international catalogs, the SGC can calculate a 

greater number of solutions considering the distribution and qual-

ity of the seismological stations installed across the country, al-

lowing greater stability in the solutions for earthquakes with mod-

erate magnitudes. 

Data can be used by any researcher interested in geophysics, 

tectonics, or seismology to do their processing, modeling, or in-

terpretation. 

Likewise, they are an important tool for the generation of 

risk management and land-use planning plans. The latter, consid-

ering that the information on location, moment magnitude and 

seismic source characterization of moderate to large magnitude 

earthquakes can be considered in national and regional seismic 

hazard maps generation and updating. 

4. ACCESS TO DATA 

Data on moment tensor and focal mechanism calculated by the 

SGC are in a database freely accessible from the institute's web-

site (Table 1). 

 

 

                                                                                
 

Figure 4. Mw from GCMT compared to Mw from  SGC resulting after moment tensor inversions calculated through different methodologies for the 2014 - 2021 

period.  Top left SWIFT, top right W phase, bottom left SCMTV, and bottom right ISOLA 
 

 

Table 1. Data specifications 

Area Geophysics, seismology, tectonics, geology, geodynamics 
 

Specific subject 
area 

Seismology 
 

Data type Table/ Image/ Map / Chart /Figure 
 

How the data 
were acquired 

Primary data were seismograms from seismological stations ( Seismic event data download (Servicio de descarga 

de datos de eventos sísmicos) at http://sismo.sgc.gov.co:8080/). From short-period stations, only the first-motion 

polarities data were used (polarities method). From broadband stations, in addition to these, full seismograms 

were also used in the seismic inversion methods described in the materials and methods section. Furthermore, 

the locations of the earthquakes were used as initial data (Seismic Catalog (Catálogo sísmico) at 

http://bdrsnc.sgc.gov.co/paginas1/catalogo/index.php). 

 

Data format Processing result for focal mechanisms calculation and moment tensor: graphs, figures, and tables.  

Parameters for 
data collection 

Earthquake location, quality of signals and solutions were considered. 
 

 
Description of 
data collection 

The database contains all earthquake inversions in the national territory and its borders, for which it was possible 

to calculate the moment tensor/focal mechanism with a minimum quality to trust the results. 

 

Location of the 
data source 

South America/Colombia  

Longitude between -90° and -66° and latitude between -7° and 15°. 

 

Data accessibility http://bdrsnc.sgc.gov.co/sismologia1/sismologia/focal_seiscomp_3/index.html 
 

http://sismo.sgc.gov.co:8080/
http://bdrsnc.sgc.gov.co/paginas1/catalogo/index.php
http://bdrsnc.sgc.gov.co/sismologia1/sismologia/focal_seiscomp_3/index.html
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5. MATERIALS AND METHODS 

 

The moment tensors and focal mechanisms were calculated us-

ing different methods: 

5.1   SWIFT (Source parameter determination based on 

Waveform Inversion of Fourier Transformed seismograms), 

proposed by Nakano et al. (2008): It is a waveform inversion 

method to estimate both the moment function and the centroid 

of the moment tensor of an earthquake quickly and routinely. 

For this method, the waveform inversion is carried out in the 

frequency domain to obtain the momentum function faster than 

when solving in the time domain. A pure double-couple (also 

called double-pair) source mechanism is assumed to stabilize 

the solution. The fault and slip orientations are estimated by a 

grid search respect to strike, dip and slip angles. The time do-

main moment function is obtained from the inverse Fourier 

transform of frequency components determined by the inver-

sion. The source location is determined by a grid search using 

adaptive grid spacing, which is gradually reduced at each step 

of the search. 

5.2   SCMTV (SeisComP Moment Tensor inVersion), a 

module implemented in the SeisComP3 software package 

(Helmholtz Centre Potsdam GFZ German Research Centre for 

Geosciences and gempa GmbH, 2008; 

https://docs.gempa.de/mt/current/apps/scmtv.html#methodology; 

https://gfzpublic.gfz-potsdam.de/pubman/faces/ViewItemFull-

Page.jsp?itemId=item_108170). This algorithm calculates the 

deviatoric part of the momentum tensor assuming a point 

source.  For this purpose, it inverts the entire waveform (body 

waves, surface waves, and the W phase). Phase type selection 

is based on magnitude (for filter selection) and epicentral dis-

tance of seismic event (for window calculation upon theoretical 

arrival times). The inversion methodology is based on Minson 

and Dreger's (2008) proposal. 

5.3  W phase, algorithm proposed by Kanamori and Rivera 

(2008): It inverts the W phase (Kanamori, 1993), a long period 

signal arriving before the S-wave, which can be interpreted as 

the superposition of the fundamental first, second, and third 

overtones of spheroidal modes or Rayleigh waves and has a 

group velocity of 4.5 to 9 km s−1 in a period range of 100-1000 

s. Amplitudes of long-period waves best represent the tsunami 

potential of an earthquake. Due to the W phase rapid group ve-

locity, most of the energy is contained within a short time win-

dow after the P-wave arrival. The time domain deconvolution 

method is used to extract the W phase of the vertical component 

of broadband records from seismic networks, and a linear inver-

sion is performed using a point source to determine Mw and the 

source mechanism. 

5.4   ISOLA (ISOlated Asperities), a software package de-

veloped by Sokos and Zahradnik (2008, 2013): Performs wave-

form inversions to find source parameters; is based on FORTRAN 

codes and provides an easy-to-use MATLAB graphical user inter-

face (GUI) (www.mathworks.com/products/MATLAB). It allows 

the waveform iterative deconvolution inversion (Kikuchi and 

Kanamori, 1991) for regional and local events, both for single- and 

multiple-point-source. The moment tensor is obtained through a 

least-squares inversion, while the position and origin time of point 

sources are searched on a grid. Computational options include in-

version to recover the full moment tensor (MT), the deviatoric 

MT, and the pure double-coupled MT. Finite-extent source inver-

sions can also be obtained by prescribing a priori the double-cou-

pled mechanism (to remain homogeneous over the fault plane); 

Green's functions are obtained by including the near-field terms. 

5.5   Polarities: The focal mechanism is computed using the 

FPFIT program (Reasenberg and Oppenheimer, 1985). It finds the 

double-coupled fault plane solution (source model) that best fits a 

given set of observed first-motion polarities for an earthquake. The 

inversion is done through a two-stage grid search procedure, 

which identifies the source model by minimizing a normalized 

weighted sum of first-motion polarity discrepancies. The minimi-

zation incorporates two weighting factors: data estimated variance 

and the absolute value of the theoretical P-wave radiation ampli-

tude (Aki and Richards, 1980). The latter weighting adds a higher 

weight to observations near radiation lobes, and a lower weight to 

those close to nodal planes. For each double-couple source model 

obtained, FPFIT estimates uncertainty model parameters (strike, 

dip, and rake) by calculating their standard deviation. 

Afterward, a uniformly distributed set of solutions is calcu-

lated that falls into the estimated uncertainty range. This set is used 

in the FPPLOT display program (https://www.usgs.gov/soft-

ware/fpfit-fpplot-and-fppage)  via SEISAN software (Ottemöller 

et al, 2021) to define the orientation range of the P and T axes 

graphically based on data. 

The National Seismological Network of Colombia has im-

proved over time in both seismological instrumentation and data 

acquisition and processing systems. From 2014 to 2017 the SGC 

used SEISAN as data processing system, so the FPFIT software 

was used for focal mechanisms calculation; likewise, to calculate 

moment tensors mainly focused on tsunami warnings for large 

earthquakes, the W phase method was implemented calculating 

automatically SMT and sending the solutions by emails. Moreo-

ver, by the same period, the ISOLA method was used to calculate 

moment tensor for earthquakes with moderate to large magni-

tudes, but was not automated as the waveforms were processed 

manually. 

https://docs.gempa.de/mt/current/apps/scmtv.html#methodology
https://gfzpublic.gfz-potsdam.de/pubman/faces/ViewItemFullPage.jsp?itemId=item_108170
https://gfzpublic.gfz-potsdam.de/pubman/faces/ViewItemFullPage.jsp?itemId=item_108170
http://www.mathworks.com/products/MATLAB
https://www.usgs.gov/software/fpfit-fpplot-and-fppage
https://www.usgs.gov/software/fpfit-fpplot-and-fppage
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Simultaneously, between 2016 and 2017, SeisComP soft-

ware for data acquisition, processing, publication, and dissemi-

nation was installed, configured, and tested, with the great ad-

vantage of everything integrated, going into production in March 

2018. This system incorporates the SCMTV method for moment 

tensor inversion, hence it was incorporated as a methodology for 

real-time processing at the SGC. Likewise, in 2015 the SGC 

along with other Colombian institutions and the Japan Interna-

tional Cooperation Agency on behalf of different Japanese enti-

ties, jointly initiated a SATREPS (Science and Technology Re-

search Partnership for Sustainable Development) project entitled 

"Project for application of state of the art technologies to 

strengthen research and response to seismic, volcanic and tsu-

nami events, and enhance risk management” with an initial du-

ration of 5 years extended for 2 more years. Under this project, 

was installed, configured, tested, and put into production SWIFT 

software for moment tensor calculation, focused on obtaining 

seismic source information for moderate to strong earthquakes 

in a reliable and fast way, with a methodology also integrated 

with SeisComP and everything was articulated to fully link it to 

SGC information dissemination system. 

Currently, the Polarities method is not routinely used, be-

cause it is less stable than waveform inversions and is not inte-

grated with our data acquisition and processing software; for 

waveform inversion methods these polarities are considered. 

The ISOLA method is used only for some very representative 

earthquakes in the country or for detailed seismic source studies, 

but is not routinely used due to the longer processing time; how-

ever, the Gisola software (Triantafyllis et al. 2021), based on the 

same methodology as ISOLA, but automates all the data pro-

cessing, is currently tested; once it is in production, likely the 

database information of this article will be updated with those 

results. W phase, SWIFT, and SCMTV methods work in real-

time routinely, automatically, and the results are reviewed by an 

expert before publishing reports as a fundamental information 

provided by the SGC to the Risk Management System and to the 

public. 

The SGC considers important to have different calculation 

methods for seismic moment tensors, not only because depend-

ing on the methodology results can be obtained for lower mag-

nitudes, but also to control the quality and stability of solutions 

for moderate to large magnitude earthquakes, which are ones 

that could have the greatest impact on the Colombian territory. 

Comparison of different solutions demonstrates the consistency 

of the results and allows the various SGC seismic catalogs to be 

self-sustaining, especially in real-time, since solutions from 

other international catalogs sometimes take longer to be pub-

lished. 

For all SMT methodologies, the moment magnitude is calcu-

lated using the ratio of scalar moment to moment magnitude cited 

by Kanamori (1977); Hanks and Kanamori (1979) and Bormann 

et al. (2013): 

Mw = (log M0 – 9.1) /1.5 = (2/3) (log M0 – 9.1) in SI o Mw = (2/3) 

(log M0 – 16.1) CGS units, 

 

Personal communications with authors of the methodologies con-

firmed that each of them uses the following ratios: SWIFT imple-

ments Mw = (log M0 – 9.1)/1.5, W phase implements Mw = (2/3) 

(log M0 – 16.1), ISOLA implements Mw = (2/3) (log M0 – 9.1) y 

SCMTV implements Mw = (log M0 – 9.1)/1.5 = (2/3) (log M0 – 

9.1). 

 

6. USE OF THE DATA 

 

Seismic moment tensor centroid solutions are fundamental to un-

derstanding fault geometry, the seismic source producing an 

earthquake, its magnitude, and the energy released (e.g., Stein and 

Wysession, 2003). Furthermore, using this information, interpre-

tations of plate tectonics, crustal dynamic and stress analysis, kin-

ematic and dynamic source models, and active fault analysis, 

among others, are possible (e.g., Shearer, 2019). Likewise, based 

on this data, it is possible to have information on the tsunamigenic 

potential of an earthquake and thus assess to alert communities 

for a possible evacuation (Tilling, 2022). 
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